Многополярная математика: различия между версиями
Перейти к навигации
Перейти к поиску
Lenskij (обсуждение | вклад) |
Korrektor (обсуждение | вклад) м |
||
Строка 17: | Строка 17: | ||
*[[Абсурд современного понятия кольца]] | *[[Абсурд современного понятия кольца]] | ||
*[[Многополярное поле]] | *[[Многополярное поле]] | ||
− | *[[Интенсивности | + | *[[Интенсивности связей]] |
==<span style="color:blue">Пространства</span>== | ==<span style="color:blue">Пространства</span>== |
Версия 19:10, 21 мая 2009
Революция в мышлении и знании >>>
База многополярности
- Инструмент сотворения
- Описание
- Многополярность
- Слагающие элементы
- Достаточная система аксиом
- Саморазвивающаяся аксиоматика
- Произвольная система аксиом
- Единица
- Изоморфизм
- Многополярные группы
- Абсурд современного понятия кольца
- Многополярное поле
- Интенсивности связей
Пространства
- Однополярное пространство
- Действительные числа. Двухполярность
- Трёхполярное пространство
- Комплексные числа. Четырёхполярность
- Пятиполярное пространство
- Шестиполярное пространство
- Семиполярное пространство
- Восьмиполярное пространство
- Девятиполярное пространство
- Десятиполярное пространство
- Одиннадцатиполярное пространство
- Двенадцатиполярное пространство
- Пространство любого числа полярностей
- Выводы
Наложение пространств
- Суперпозиция двухполярных пространств
- Суперпозиция трёхполярных пространств
- Кватернионы. Суперпозиция четырёхполярных пространств
Алгебра
- Ревизия современной математики
- История
- Противоречие в современной алгебре
- Поиск выхода из противоречия в алгебре
- Примеры алгебр, не содержащих двухполярность
- Закон сброса
Многополярные алгебры
- Исследование
- Опровержение незыблемости
- Ассиметричные алгебры
- Открытые и замкнутые алгебры
- Алгебры с двумя интенсивностями связей
- Не бинарные алгебры
- Тригонометрическая форма экспоненты в разных пространствах
- Алгебры харлок (сложных пространств)
- Тригонометрические формулы Эйлера и Ленского
- Алгебры двух пространств